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SIGNIFICANCE AND EXPLANATION
et
——_—~\ff> One measures the approximation power of a family 8 of piecewise
polynomial approximating functions on some partition in terms of the
meshsize h of that partition. Typically, the error of approximation goes to
;f zero like h' as the meshsize goes to zero, with r depending on the
smoothness of the function being approximated. There is a maximal r typical

for the space S used, and faster convergence rates are possible only for

very special functions. Naturally, one would like this optimal rate or
approximation order h' to be as fast as possible, i.e., would like the
maximal r to be as large as possible. 1In any case, it is an important
practical question to ascertain, for a given approximating space 8, what its
optimal approximation order is.‘=::; 1

S 3
In a multivariate context, this is not an easy question to answer, even b

for pp spaces on very simple partitions, as soon as one demands that the

approximating functions have a certain amount of smoothness. The report shows
that a certain line of attack which was thought to be quite reasonable by
several workers in the field (including the authors) cannot succeed, in
general. This makes the problem even harder than it was initially thought to

be.

The responsibility for the wording and views expressed in this descriptive
susmary lies with MRC, and not with the authors of this report.
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Approximation order from bivariate c'-cubicss A counterexample
3 C. de Boor and X. M111q+

1. Introductioa. We deal with a socale (lh) of approximating spaces, generated from a

fixed space 8 by & simple scaling:
B, 1= 9, (8),
with
(0,2)(x) 1= £(x/h} , all f, x, h .

We are interested in the approximation order obtainable from (8,) , i.e., in
& 1E atee(f, 8,)
‘ as a function of h and for £ sufficiently smooth. Herse,
dist(f, 8,) 1= ht”ahlf - gl
:! and I°1 is the sup norm on some closed domain Gs_lz.
4

121 = 12¢x)t .

*9Prec
It is easy to see that

diet(t,s) = o(w,(h) , a1l £ ecta) ,

in case 8 contains a local and stable partition of unity. By this we wean that
1= EQ‘_ on W
tor louo. 01 e 8 with i
sup, diam supp 01 < =
and

sup, “1. < =,

The last condition is automatically satisfied in case the 01 are all nonnegativae.
We are interested in suitable conditions on § which insure that
aise(f, 8) = o(n%) for all sufficiently smooth f . ()

It is easy to see that (1) implies

*'l‘his naterial is based upon work supported by the National Science Foundation under
Grant No. MC8-7927062, Mod. 1.

Sponsored by the United States Army under Contract No. DAAG29-80-C=0041.
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B, 1= polynomials of degzee < k .
On the other hand, this condition is clearly not sufficient for (1) since, €.q., 8 = n
implies that 8§, = B, for all h , hence dist(f, 8,) is independent of h in this case.
What seems to be needed is that B, be contained in 8 “locally”, much as Py is con~
tained locally in 8 in case 8 contains a local partition of unity.

Here is a precise formulation of such a condition.

Comdition B, . For every p € B, , there exists a 'sequence’ (01) in 8 so that

p = 2101 and supidiucnpp%(-.

At least in case 8 is "uniform", e.g., 8 is a space of piecewise polynomial
functions on some uniform partition of lz + ONG vouid axpect to oonclude from this the
validity of (1), i.e., global approximation order o(k) (see, e.g., [BD], [D]).

It is the purpose of this note to give an example of a piecewise polynomial space §
on a uniform partition of ¥ which satisfies Condition Py + Yot gives

atst(f, 8,) > const, b’ B t))
for some positive consty, and for the particular function
gex = (x(1)x(2))? .
This dashes all hopes that the approximation order from a piecewise polynomial scale
(Sh) could be settled by finding out which polynomials are contained locally in
8 . Presumably, some stability has to be added to Condition ’k before global approximation
order o(h*) can be deduced.

Here is an ocutlise of this note. In gection 2, we show that cur example space 8
satisfies Condition P, and that (8,) has approximation order O(h3) at least. In Section
3, wo identify 8 within a larger space of piecewise cubic functions as the annihilator of
a set A of local linear functionals. We 2lso show that there exists & bounded a @ n"\o

80 that tm a(A) Af = 0 for all £ with compact support, while IMG alA)A = 0
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only if the sum is, in effect, over all or over none of A . This is important for the

final section, in which we prove that (8,) has approximation order at most ond) .

2. Sacoth pp functicns and box splines. We consider bivariate pp (1= plecewise poly-
nomial) functions on the partition 4 of B obtained from the thres families of mesh-
lines

x(1) =n, x(2)=n, x(1)=x(2)+n, all neS.
We are particularly interested in the space
8 1= ’I,A 1= D"An c'(n’)
of piecewise cubic functions on the partition 4 and in c! .

We have foregone 'eho opportunity to make the symmetries in 4 more apparent by haviang
the three families of meshlines intersect each other at an angle of 120° (as is done, ¢.9.,
in (Fr]). This needlessly complicates the notation. It is sufficient to note that any
permutation of the meshline families can be accomplished by some linear map on la , and
the corresponding change of variables leaves !:' A invariant.

A stable and local partition of unity in 8 4is constructed in (D], (.‘] as follows.

Consider the linear map les —> ¥ characterized by the fact that

.1 ¢ i=1,4
Poi - e, ¢ 1=2,8 ¢
01402 s i=3

with .e; the ith unit vector (in ls). Lat M be the P-shadow of
B = (0,3,
i.e., M is the distribution given by the rule
M = [ 40P , all g .

gince M is the shadow of a box, we c:an.B it a box spline. It is immediate from the defin-
ition that M > 0 , supp M = P(B) , and

I M(e=§) = 1, with J =9,

j&s

the last because

)4 n('-) = I P = - .
g Moo 3 Jaey #° #—to.u’ or In’ '

3=




rurther, one verifies that M € 8 .,
In addition, [BH,] provides an Iy-bounded linear functional A with support in

supp X so that

P = j:a Ap(e+j) M(*~j) , for all p e ’3 (&)
and shows how this result leads, in standard quasi-interpolant fashion, to the conclusion
that

atet(e, 8,) = o(nd) (2

for all sufficiently smooth £ . On the other hand, [BH,] makes clear that (1) is sharp,

i.8., that

with
8y = span (H('-j)):’u .
Therefore, (2) provides the optimal approximation order from (S"'h) .

Since 8, is a proper subspace of 8 , this only provides a lower bound on the
approximation order from (8),) . Further, § satisfies Condition ®, . To see this, recall
from [.2] that 8y contains certain cubic polynomials, e.g., the two polynomials

x—> x(2)3(3x(1) - x(2)) and x> x(1)3(3x(2) - x(1)) . (3)
In addition, the linear change of variables which interchanges o and o +e, , hence
carries e, to -e, , leaves 4 invariant, hence leaves § invariant. Therefore, 8
contains the cudic polynomials which result from such a change of variables from those in
{(3). Up to parabolic terms, these are the polynomials
x—> (x(1)-x(2))3(2x(1) + x(2)) ana  x+—> x(D3(2x(1) - 3x(2)), 1Y)

and the four polynomials (3), (4) are linearly independent since the matrix

0 0 3 -1
-1 3 00
2-3 0 1
2-3 0 0

of their leading coefficients is invertible.

htr b e adia, )
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3. Beznsteia ogordisstes. In this auxiliary section, we identify 8 = D: a s
’

subspace of B0
4.

express these oconditions in terms of the Dernstein coordinates for pp functions on a

A satisfying certain homogeneous conditions., We f£ind it most convenient to

triangulation, as introduced by Frarin (¥}, following earlier work by de Casteljau [C) and
Sabin (8]. Here is a short explanation of this very useful representation.
on a single triangle T with vertices U, V, and W , we use barycentric coordinates.
This means that each point x is associated with the triple (u,v,w) for which
X = Ww+w+w, and u+tv+wai,

In these terms, we describe a polynomial p of Segree € n by

) 1+3§u-ub*”‘ g ¢
with
oDl 43K
’ijk(“) T T L Al e

We deal with the 31 choices in this representation by associating buk with the poiat
Xigp = (40 + IV + Xw)/n
for all 4 + j + k = n . The resulting funoction
b: xuko—b bj.jk

is called the B(ernstein or -$zier)-net for p (with respect to T ). It is independeat of
how we associate the vertices of T with the letters U, V, W . Noreover, if A 4is an
affine change of variables, then the B-net for pOA (with respect to A~'(t) ) 1s boA .

This makes it easy to compare polynomial pieces across triangle edges. For example, on
an edge of T , p is entirely determined by b restricted to that edge. Moreover, if
P' is a polynomial of degree € n on a triangle <T' having that edge in common with T ,
then p = p' on that edge 1ff Db = b' on that edge, with b' the B-net for p* .

Higher smoothness across such an edge is also very simply expressible in terms of b
and b' (ses (F]). We now describe these conditions only to the extent that we need them,
il.e., we describe the conditions which an f @ 12' A Bust satisfy to belong to 8 = !1

4,8
8ince such an f is continuous, the B-nets of its various pieces must agres at all points

of overlap in their domains. We can therefore think of the B-nets of its various pieces as

forming one B~net, a function bf defined on all of
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I3 = (w32, (n

et T , ' be two triangles of A with a common edge € . There are four points of J,
on € . Bach of the three pairs Xq X3 of such neighboring points has a nearest Iy
neighbor y in T and a nearest as-noighboz y' 1in T' and together these four points
fora the vertices of a parallelogram halved by € . One may verify directly that £ has
continuous first derivatives scross ¢ if and only if
be(x4) + bgix,) = Dbo(y) + byly')

for each of these three parallelograms.

Thus, associated with each edge € in A there are three linear functionals
A on ¥, of the form

AL = Bylx,) + bylx,) = byly) - byly') ,

with Xy Xy neighboring Ja-point- on ¢ and y , y' adjacent Ja-polnu in the
neighboring triangles. Note that we have so normalized A that the edge points receive N

weight 1 and the off-edge points receive weight -~1 . &

Since A ocontains three distinct edge types, this gives altogether nine

nonoverlapping classes At ¢ 4,3%1,2,3, of linear functionals. To be precise, we

3

with segment i of edge Jj , and, in particular, Az 3 with the middle

associate A 4

J
segaent. We need not be more precise than that.
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k Zach class A 13 is left invariant under translation of the independent variable by
some J @ J . Their union ,

i A g= A1‘ U,V A33 ;

characterizes 8 within r2 A in the sense that
: ’
8 = kexr A = N kexr A .

! AGA
3 Next, we sesk a @ IA\ 0 so that

L a(A)A = 0 .
AeA

T o e T ————

By this we mean that

G5, s i il .

La(A)Adf = 0

2 eve

for every f of compact support. For such an f , the sum has only finitely many nonsero

terms since each A has support only in some pair of adjacent triangles of A ,
There may be many solutions, but, when we require additionally that a be constant on

each AL g then the solution set can be ghown to be four-dimensional. There is a two-

dimensional set of solutions which vaniah on Az all j . These solutionsg are of no

j L4

interest to us since for them we have already

4 a(A) A = ¢ (2)
SuppAcG
for various bounded sets G .

Solutions a for which (2) only holds if the sum is, in effect, over all or over none
of A are obtained as follows.

Jesma. lLet a @€ lA be such that a = A(i,9) , with

MU

- = -y
A = 20 28 2y
-a =B -y

and a+B+yY=0. Then La(A)A=o.

Proof. By its definition, each A carries an f to a weighted sum of values of bf o

We can, therefore, understand Za(A)A by computing the weight it assigns to by(x) for

sach x € J; . There are three types of points x in W) those at a vertex of A ,

-7=




those inside an edge, and those inside a triangle. We consider each type in turn.
A vertex of A serves as an edge point for six A's , one from each of the classes
A with i # 2 . Thus, the total weight at a vertex point is

i3
A(d,3) = =2(a+B+y) = 0 .

Lin2
As to inside edge points, consider without loss of generality one on an edge of type
1. Buch a point serves as an edge point for one A € A21 and one A € A11u A31 , and as
an off-edge point for one A € A12 °A32 and one A @ A13u A33 + Its total weight is
therefore
A(2,1) + A(1,1) = A(1,2) - A(1,3) =
220 + (-a) ~ (=B) = (=y) = a+B+yY = 0.,
Pinally, an interior point is an off-edge point for three A's , one each from Azj ’
3=1,2,3. 1Its weight is therefore

26 =-28~2y = 0 . |}

the local linear map I which associates f with the unique element If of lf A which
’

agrees with f on J; . It is then a simple matter to check that, for every f @ P,

maap A > AIf is constant on each Aij

£ and f(°+j) differ only by some cubic polynomial). In particular, for
£0x) 1= (x(1)x(2))? ,

we have (using the association of edge types indicated in Figure 1) that

% -6 6
(Iz|“xg) - 3 3 -u2i.
% -6 6
Therefore,
3
K = T a(A,,) (X£)(A = 18(a + B) - 36Y .

)
1,9%1 1) 1)
The number X 1is nonzero for many choices of a, B, Y for which a + B + Y = 0 , Make

such a choice. Then, for a square Q with sides parallel to the axes,
z a(A) AIf = «xvarea(Q) + O(perimeter(Q))

suppAsQ
while E' AcQ a(A) AI has support only on triangles near the boundary of Q , hence

%
; -8~

We extend each A to the continuous linear functional AI on c(l?) with the aid of

{since each ) vanishes on ?, and , for any J,
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I I a(A) A1 0 = oO(perimeter(Q)) .
suppiAcQ

This is the essential fact required in the next and final section.

4. An upper bound for the approximation order. In this section, we establish the main
point of this note. With S = ‘i,A as defined earlier, we show that, for all small
enough h ,
aist(f, S,) > const h3

for some positive const and for the particular function

fax—> (x(D)x(2)2 .
For the proof, we pick some axis~oriented square Q in G and consider

W 1= a(l) I o

h supgkigh 1/h

with
Q, = {(xh:xeq}.
Since sh c ker uh + we have
dist(f, Sh) > distQ(f, Sh) > distQ(f, ker uh) = Iuhfl/luhlc(g) .
Further,
4
°1/h£ = h¢t,
while area(Qh) - area(Q)/h2 and perimece;(Qh) = perimeter{(Q)/h . Therefore, from (3.3),
Iuhfl = const h2 + 0(h3)
with conat := |K| area(Q) > 0 , while, from (3.4),
'“h'c(q) o(1/h) .
This shows that
dist(f, 5,) > const h3 + o(h%)

for some positive const , as asserted.

-9
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